Attribution of projected changes in U.S. ozone and PM2.5 concentrations to global changes
نویسندگان
چکیده
The impact that changes in future climate, anthropogenic U.S. emissions, background tropospheric composition, and land-use have on regional U.S. ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in U.S. anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily
منابع مشابه
Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes
The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ) model...
متن کاملThe effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble.
Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of ch...
متن کاملEstimation of future PM2.5- and ozone-related mortality over the continental United States in a changing climate: An application of high-resolution dynamical downscaling technique.
UNLABELLED This paper evaluates the PM2.5- and ozone-related mortality at present (2000s) and in the future (2050s) over the continental United States by using the Environmental Benefits Mapping and Analysis Program (BenMAP-CE). Atmospheric chemical fields are simulated by WRF/CMAQ (horizontal resolution: 12×12 km), applying the dynamical downscaling technique from global climate-chemistry mode...
متن کاملOn the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozoned...
متن کاملGlobal and regional trends in particulate air pollution and attributable health burden over the past 50 years
Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of < 2.5 μm) is a major risk factor to the global burden of disease. Previous studies have focussed on present day or future health burdens attributed to ambient PM2.5. Few studies have estimated changes in PM2.5 and attributable health burdens over the last few decades, a period where ai...
متن کامل